16级同学袁凯琦,在实验室雷凯老师和沈颖老师的指导下,完成一篇论文“KMR: knowledge‑oriented medicine representation learning for drug–drug interaction and similarity computation”,并已确认被Journal of Cheminformatics期刊录用。

 

Journal of Cheminformatics期刊简介:

Journal of Cheminformatics(https://jcheminf.biomedcentral.com)是计算机领域面向化学信息学分析与应用的学术期刊,被中科院评为SCI 1区期刊。该期刊近五年影响因子(IF)为3.98。

 

中稿论文简介:

标题:KMR: knowledge‑oriented medicine representation learning for drug–drug interaction and similarity computation

作者:Ying Shen, Kaiqi Yuan, Min Yang, Buzhou Tang, Yaliang Li, Nan Du, Kai Lei*

论文链接:https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0342-y

摘要:药物的有效表示为医疗保健分析提供了重要支持,例如药物相互作用(DDI)预测和药物 – 药物相似性(DDS)计算。然而,不完整的标记数据和药物特征矩阵稀疏为药物表示学习造成了实质性障碍,使得新药的资料在公开发布之前难以准确地识别新药的性质。为了解决这个问题,我们提出KMR,这是一种以知识为导向的特征驱动方法,可以准确地表达药物相关知识。我们对临床应用中的医学数据集进行了一系列实验,以证明KMR能够进行正确表示药物属性。实验结果表明, KMR可以发现有意义的DDI,准确率高达92.19%,证明了KMR可以显著提高训练集中未出现的新药的DDI预测质量。实验结果还表明,KMR可以通过促进药物知识识别DDS,准确率为88.7%,优于现有的最先进的药物相似性测量。