在实验室雷凯老师的指导下,17级付求爱同学的一篇论文被International Joint Conference on Neural Networks 2019国际学术会议(IJCNN 2019)录用。

论文题目:Multi-Task Learning with Capsule Networks

论文简介:多任务学习是一种在利用任务之间的共性和差异的同时,共同学习多个任务的机器学习方法。共享表示是通过多任务学习来学习的,为每个任务学习的内容可以帮助其他任务更好地学习。现有的多任务学习方法大多采用深度神经网络作为每个任务的分类器,深度神经网络可以利用其强大的曲线拟合能力来实现训练数据的高精度,即使在学习的表示还不够好的情况下,然而这与多任务学习的目的是相矛盾的。本文提出了一个多任务胶囊网络(MT-Capsule)框架,该框架利用胶囊网络改进了多任务学习。胶囊网络是一种新型的神经网络模型,它可以智能地对部分整体关系进行建模,构成视点不变的知识,并自动将所学知识扩展到不同的新场景中。在大型真实数据集上的实验结果表明,MT-Capsule可以显著优于目前最好的方法。

 

IJCNN是每年举办一次的关于国际神经网络领域的前沿会议。研讨会包含了对目前在机器智能、人工智能、生物神经网络等方面取得的重大进展的探讨, 整个会议共有超过30个分会议,共有超过400个口头报告和海报展示,多种形式的学术交流使得参会者从创新性和前沿性问题对神经网络进行各方面深入探讨。

17级付求爱同学参加IJCNN 2019国际学术会议插图

会议的宗旨是为来自世界各地的专家学者提供一个展示和讨论最新研究成果的平台,并激发不同研究领域之间的思想交流。研讨会的宗旨是为来自世界各地的专家学者提供一个展示和讨论最新研究成果的平台,激发不同研究领域之间的思想交流,并试图通过研究各项难题来探索生物神经网络的奥秘。本次会议(IJCNN 2019)于2019年7月14-7月19日在匈牙利布达佩斯举行举行,会议包括来自瑞士、美国、英国、德国、日本和中国等国家的学者前来参加。

17级付求爱同学参加IJCNN 2019国际学术会议插图1

17级付求爱作为论文作者参加了此次IJCNN 2019会议,认真听取专家的大会报告和分会报告,并积极与国内外同行展开了深入地交流。

17级付求爱同学参加IJCNN 2019国际学术会议插图2

通过参加本次会议,解到了相关领域内最新研究进展,开拓了视野。通过做报告,认识到了语言表达的重要性。通过与参会人员的交流,受到了很多启发。感谢互联网研发中心和雷老师的资助。